En Veracruz diseñan sistema para identificar cáncer cervicouterino
Dioreleytte Valis/Vale por México
2016-12-11 18:30:28
A+
a-
En el Centro de Investigación en Inteligencia Artificial (CIIA) de la Universidad Veracruzana, se desarrollan líneas de investigación orientadas a facilitar diagnósticos médicos, como es el caso del cáncer cervicouterino. Tras este enfoque, el doctor Héctor Gabriel Acosta Mesa diseñó un sistema que auxilia en el diagnóstico de lesiones cancerígenas, mediante el uso de la colposcopía.


El sistema se vale de la información visual aportada por una serie de imágenes, de las cuales se extraen patrones que permiten el aprendizaje automático de la máquina. El aprendizaje automático —como lo denomina el experto— es información ingresada al sistema y que es aportada por los especialistas en colposcopía que, a través de un modelo matemático, aprende las relaciones entre las distintas características de la imagen y de esta forma facilita el diagnóstico basado en factores cuantitativos.

El proyecto fue financiado por el Fondo Sectorial de Investigación en Salud SSA/IMSS/ISSSTE-Conacyt y presentado como "Análisis del comportamiento espectral del epitelio escamoso normal del cérvix y el epitelio acetoblanco por infección de virus del papiloma, mediante el procesamiento digital de imágenes colposcópicas usando un modelo dinámico lineal", y en la primera fase se trabajó con doscientas pacientes para entrenar el sistema.

El doctor Héctor Acosta es especialista en inteligencia artificial, coordinador de maestría en el CIIA y miembro nivel I del Sistema Nacional de Investigadores (SNI). En entrevista con la Agencia Informativa Conacyt, compartió detalles sobre su línea de investigación Análisis de imágenes médicas, particularmente enfocada en el diagnóstico del cáncer cervicouterino.

Agencia Informativa Conacyt (AIC): ¿De qué herramientas se vale el análisis de imágenes para convertirlas en datos cuantitativos?

Héctor Gabriel Acosta Mesa (HGAM): Fundamentalmente de texturas en tejidos, otro factor es el color, importante para ciertas decisiones, como características sugestivas de cáncer, y más en un esquema como la temperatura. También se evalúa la profundidad para concluir si hay inflamación, y las relaciones espaciales, que son características para generalizar en una regla. La idea es que automáticamente el análisis de la imagen mediante estas características realice un diagnóstico. El software sugiere, mediante el estudio de la secuencia de imágenes, un diagnóstico en aproximadamente cinco minutos.

Con información de Conacyt.
* Deja un comentario y no olvides compartir esta nota, es la única manera de mantener este proyecto de manera independiente.